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lamp7 with a Pyrex filter in a quartz immersion well, with 
stirring by a stream of nitrogen. Photolysis was complete in 
1 hr. After evaporation of the dioxane, the residue was dis­
solved in water and washed with chloroform. The product 
contained a small amount of a colored water-soluble impu­
rity and was further purified by preparative tic in silica gel, 
using CHCl 3 -MeOH-HOAc (90:30:5). It was precipitated 
from methanol with ether in nearly quantitative yield, mp 
195-20O0,8 [a]21D +18.3 (c 1, EtOH). 

To confirm further that no racemization occurred in any 
of the reactions, we esterified Ara-Boc-Anm-(ONB)-His with 
CH2N2, removed the ONB group by irradiation, and sepa­
rated the reaction products by preparative tic. An almost 

• quantitative yield of A™-Boc-L-histidine methyl ester was 
obtained, mp 124-125.5° (EtOAc-petroleum ether). The 
ORD spectrum of this sample was identical with that of an 
authentic sample synthesized from histidine methyl ester 
hydrochloride, with [a]290 —50.7. 

Work is in progress on the synthesis of peptides using this 
protecting group. 
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5-Thiomethylpentane-2,3-dione. A Unique Natural 
Product from the Striped Hyena 

Sir: 

Ruzicka's isolation of civetone and muskone in 1926' 
opened the area of mammalian scent materials.2 Only re­
cently have compounds of further chemical interest3 been 
identified. We now report the isolation of 5-thiomethylpen-
tane-2,3-dione from the anal scent gland of the striped 
hyena {Hyaena hyaena), the first a-diketone thioether from 
a natural source. 

Analysis (gc-mass spectral) of a chloroform extract of 
waxy material deposited by either sex4 indicated two vola­
tile components, representing 2% of the total material. The 
more volatile of these, mol wt 146, appeared to contain sul­
fur. In addition to the parent, P + 1, and P + 2, large peaks 
were observed at m/e 118, 103, 90, 75, 61, and 43. The sec­
ond less volatile compound exhibited m/e 224 and did not 
contain sulfur. Material of mol wt 146 was collected by vac­
uum distillation of crude, waxy material at 55° (2 mm) into 
cold traps, followed by preparative glc, giving a light yellow 
odoriferous oil5 which exhibited the following pmr spec­
trum: 5 2.03, s, 3 H; 2.30, s, 3 H; 2.63, t, 2 H, / = 5.5 Hz; 
2.95, t, 2 H, J = 5.5 Hz. The two methylene groups are ad­
jacent, indicated by their coupling, and the presence of only 
ten protons shows that other groups must be present to 
achieve a mol wt of 146. The ir spectrum confirmed this, 
showing a single carbonyl absorption at 5.82 ^. Further 
confirmation was achieved by preparation of a dimethox-
ime6 which exhibited m/e 204, 173, 157, 142, 127, 126, 125, 
95, and 61 and a substituted quinoxaline7 which indicates 
that the two carbonyl groups are adjacent to each other in 
the original molecule: m/e 218,203, 190, 171, 143, 108,76, 
and 61.8 On the basis of these derivatives, and the pmr and 
ir spectra, the structure of the 146 material is CH-,CO-
COCH 2CH 2SCH 3 (I). 

Synthesis of I was achieved from biacetyl, sodium hy­
dride, and chloromethyl methyl sulfide as well as by mixing 
equimolar amounts of biacetyl, formaldehyde, methane-
thiol, and a catalytic amount of diethylamine9 at 0° fol­
lowed by distillation at 70°. The residue of this distillation 
was distilled, bp 72° (3 mm), giving 30% of I; as bissemi-
carbazone, mp 234.0-234.5° dec, mmp 234.0-235.0° dec. 
Anal. Bissemicarbazone, C8Hi6N6O^S, calcd: C, 36.90; H, 
6.19; N, 32.29; S, 12.31. Found: C, 37.08; H, 5.98; N, 
32.59; S, 12.31. The mass spectrum, retention times, and ir 
and pmr spectra of synthetic I purified by preparative glc5 

were identical with those of the natural material. 
Although n- butyl mercaptan and dicrotyl sulfide have 

been identified as odorous components of skunk10 and di-
and trisulfides have been found in ponerine ants,11 this 
thioether containing an a-dicarbonyl represents a unique 
natural product. The nature of the mol wt 224 compound, 
its relationship to I, and scent-marking behavior are under 
investigation. 
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Acidities of Carbon Acids. IV.1 Kinetic vs. Equilibrium 
Acidities as Measures of Carbanion Stabilities. The 
Relative Effects of Phenylthio, Diphenylphosphino. and 
Phenyl Groups 

Sir: 

It has become common practice to use rates of deuterium 
exchange, or the like, to obtain evidence concerning such 
important questions as the effects of aromaticity,2 antiaro-
maticity,3 homoaromaticity,4 heteroatom substitution,5 and 
s character,6 on relative carbanion stabilities. It has been 
clear for some time, however, that interpretation of the ki­
netic data is made difficult by the existence of factors such 
as internal return and ion pairing. If internal return is pres­
ent, as is often the case, the rate-limiting step is not the rate 
of carbanion formation but rather the rate of exchange of 
solvent molecules at the carbanion site.7 If ion pairing oc­
curs, as is true for most of the solvents used for such studies 
(Et2O, THF, CHA, NH 3 , r-BuOH, MeOH, etc.), relative 
rates may vary markedly, depending on the nature of the 
cation, the anion, and the solvent. For example, Shatensh-
tein and Gvozdeva found the ratio of exchange rates, 
k^SCH>/k^'CH\ to vary from 104 to 40 to 0.2 in changing 
from KNH^-NH 3 to NaCH2SOCH3-DlVlSO to t- BuOK-
DMSO.8-9 

To add to these difficulties there is evidence that the 
Brjzfnsted a coefficient, which relates kinetic to equilibrium 
acidities, is not readily predictable and may sometimes be 
anomalous.12 The existence of Br^nsted a coefficients 
greater than one and less than zero12 shows that, even when 
internal return and ion pairing effects are absent, kinetic 
acidities may misrepresent carbanion stabilities. A coeffi­
cient larger than one means that the kinetic aridity has ov­
erestimated carbanion stability, as judged by equilibrium 
acidities. On the other hand, comparisons of kinetic acidi­
ties often leads one to underestimate carbanion stabilities. 
For example, nitromethane is deprotonated by H O - in 
water at a rate only ca. 100 times that for acetone,13 where­
as the difference in their equilibrium constants is ca 1010 in 
water,14 and 109-7 in DMSO.1 In addition, when substitu-
ents are introduced near the acidic site, polar, steric, and/or 
conjugative effects may affect kinetic acidities in such a 
way as to indicate an order of carbanion stability the in­
verse of that actually present. The effect of Me substitution 

on deprotonation rates in the series CH 3 NO 2 , MeCH2NO2 , 
and Me 2 CHNO 2 is an example where kinetic acidities pre­
dict the wrong order of anion stabilities, as judged by equi­
librium acidities (negative Bronsted a) . 1 2 We now present 
what appears to be a similar example from the effects of a-
heteroatom substitution. 

The relative rates of exchange of phenyl methyl sulfide, 
dimethylphenylphosphine, and toluene with potassium 
amide in liquid ammonia have been reported to be: 
C6H5SCZZ3 (104) > C6H5P(CZZ3)2 (2) > C6H5CW3 

(LO).5 From these results it would appear that the relative 
order of effectiveness of groups in stabilizing carbanions is 
C 6H 5S » C6H5P > C6H5. The relative effects of the 
(C6Hs)2P, C6H5S, and C6H5 groups have now been as­
sessed by measuring equilibrium acidities in DMSO with 
methyl phenyl sulfone as the parent acid. The pA"s of 
GCH 2 SO 2 C 6 H 5 with G = H, C6H5S, (C6H5J2P, and C6H5 

were found to be 29.O5, 20.3, 20.2, and 23.4, respective­
ly.16-17 Assuming that the effect on acidity is primarily one 
of carbanion stabilization,1 the effects range from 5.9 to 9.1 
powers of ten,18 corresponding to ca. 8.0-12.5 kcal/mol at 
25°. 

It is noteworthy that the effect of the phenyl group on 
carbanion stability observed is larger (A pK = 5.6) than any 
reported previously in solution,19 and that the effect of the 
phenylthio group is even larger.21 The effect of the diphen­
ylphosphino group appears to be slightly larger than that 
for the phenylthio group, judging from acidities in the 
G2CH2 series; thus, pA"s for G = (C6H5)2P, C6H5S, C6H5 

were found to be 29.9, 30.8, and 32.3,22 respectively. It ap­
pears, then, that the C6H5P group, instead of being much 
less effective at carbanion stabilization than the C6H5S 
group, as kinetic acidities suggest, may be slightly more ef­
fective. It follows from these results that, although kinetic 
acidities often give a rough guide to carbanion stabilities, 
conclusions regarding relative carbanion stabilities derived 
from kinetic measurements must be regarded as tentative, 
at best.23 
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